Team Work

Mobility Management Approaches for Mobile IP Networks

ABSTRACT

In wireless networks, efficient management of mobility is a crucial issue to support mobile users. The Mobile Internet Protocol (MIP) has been proposed to support global mobility in IP networks. Several mobility management strategies have been proposed which aim reducing the signaling traffic related to the Mobile Terminals (MTs) registration with the Home Agents (HAs) whenever their Care-of-Addresses (CoAs) change. They use different Foreign Agents (FAs) and Gateway FAs (GFAs) hierarchies to concentrate the registration processes. For high-mobility MTs, the Hierarchical MIP (HMIP) and Dynamic HMIP (DHMIP) strategies localize the registration in FAs and GFAs, yielding to high-mobility signaling. The Multicast HMIP strategy limits the registration processes in the GFAs. For high-mobility MTs, it provides lowest mobility signaling delay compared to the HMIP and DHMIP approaches. However, it is resource consuming strategy unless for frequent MT mobility. Hence, we propose an analytic model to evaluate the mean signaling delay and the mean bandwidth per call according to the type of MT mobility. In our analysis, the MHMIP outperforms the DHMIP and MIP strategies in almost all the studied cases. The main contribution of this paper is the analytic model that allows the mobility management approaches performance evaluation.

Existing System:

The mobile IP can provide continuous Internet access services for the mobile user and does provide a simple and scalable solution to user mobility. Yet, mobile IP is not a good solution for users with high mobility because it may cause excessive signaling traffic and long latency. The hierarchical mobile IP (HMIP) protocol was proposed to employ the hierarchy of foreign agents (FAs) and the gateway FAs (GFAs) to reduce the number of registration operations and to reduce the signaling latency. However, since user mobility characteristics and network traffic load are always in changing, the centralized and pre-planned network topology of HMIP would become invalid or even lead more signaling cost if no adjustment to be adopted. This paper introduces a novel distributed and dynamic mobility management strategy for mobile IP where the signaling burden is evenly distributed and the regional network boundary is dynamically adjusted according to the real-time measurement of handover strength or traffic load in the networks.

Proposed System:

Hence, we propose an analytic model to evaluate the mean signaling delay and the mean bandwidth per call according to the type of MT mobility. In our analysis, the MHMIP outperforms the DHMIP and MIP strategies in almost all the studied cases. The main contribution of this paper is the analytic model that allows the mobility management approaches performance evaluation.

SOFTWARE REQUIREMENTS:
• Web Technologies : HTML, CSS, JS. JSP
• Programming Language : Java
• Database Connectivity : JDBC
• Backend Database : MySQL
• Operating System : Windows 08/10
HARDWARE REQUIREMENTS:
• Pentium processor : Core I3
• RAM Capacity : 2GB
• Hard Disk : 250GB
• Monitor : 15’’ Color Monitor

For More Details of Project Document, PPT, Screenshots and Full Code
Call/WhatsApp – 9966645624
Email – info@srithub.com

Facebook
Twitter
WhatsApp
LinkedIn

Enquire Now

Leave your details here for more details.