Team Work

Detecting Malicious Facebook Applications

ABSTRACT:

With 20 million installs a day, third-party apps are a major reason for the popularity and addictiveness of Facebook. Unfortunately, hackers have realized the potential of using apps for spreading malware and spam. The problem is already significant, as we find that at least 13% of apps in our dataset are malicious. So far, the research community has focused on detecting malicious posts and campaigns. In this paper, we ask the question: Given a Facebook application, can we determine if it is malicious? Our key contribution is in developing FRAppE—Facebook’s Rigorous Application Evaluator—arguably the first tool focused on detecting malicious apps on Facebook. To develop FRAppE, we use information gathered by observing the posting behavior of 111K Facebook apps seen across 2.2 million users on Facebook. First, we identify a set of features that help us distinguish malicious apps from benign ones. For example, we find that malicious apps often share names with other apps, and they typically request fewer permissions than benign apps. Second, leveraging these distinguishing features, we show that FRAppE can detect malicious apps with 99.5% accuracy, with no false positives and a high true positive rate (95.9%). Finally, we explore the ecosystem of malicious Facebook apps and identify mechanisms that these apps use to propagate. Interestingly, we find that many apps collude and support each other; in our dataset, we find 1584 apps enabling the viral propagation of 3723 other apps through their posts. Long term, we see FRAppE as a step toward creating an independent watchdog for app assessment and ranking, so as to warn Facebook users before installing apps.

EXISTING SYSTEM:

  • So far, the research community has paid little attention to OSN apps specifically. Most research related to spam and malware on Facebook has focused on detecting malicious posts and social spam campaigns.
  • Gao et al. analyzed posts on the walls of 3.5 million Facebook users and showed that 10% of links posted on Facebook walls are spam. They also presented techniques to identify compromised accounts and spam campaigns.
  • Yang et al. and Benevenuto et al. developed techniques to identify accounts of spammers on Twitter. Others have proposed a honey-pot-based approach to detect spam accounts on OSNs.

DISADVANTAGES OF EXISTING SYSTEM:

  • Existing system works concentrated only on classifying individual URLs or posts as spam, but not focused on identifying malicious applications that are the main source of spam on Facebook.
  • Existing system works focused on accounts created by spammers instead of malicious application.

PROPOSED SYSTEM:

  • In this paper, we develop FRAppE, a suite of efficient classification techniques for identifying whether an app is malicious or not. To build FRAppE, we use data from MyPage- Keeper, a security app in Facebook.
  • We find that malicious applications significantly differ from benign applications with respect to two classes of features: On-Demand Features and Aggregation-Based Features.
  • We present two variants of our malicious app classifier— FRAppE Lite and FRAppE.

ADVANTAGES OF PROPOSED SYSTEM:

  • The proposed work is arguably the first comprehensive study focusing on malicious Facebook apps that focuses on quantifying, profiling, and understanding malicious apps and synthesizes this information into an effective detection approach.
  • Several features used by FRAppE, such as the reputation of redirect URIs, the number of required permissions, and the use of different client IDs in app installation URLs, are robust to the evolution of hackers.

SYSTEM REQUIREMENTS

SOFTWARE REQUIREMENTS:

•           Web Technologies                               :           HTML, CSS, JS. JSP

•           Programming Language                      :           Java and J2EE

•           Database Connectivity                        :           JDBC

•           Backend Database                              :           MySQL

•           Operating System                               :           Windows 08/10

HARDWARE REQUIREMENTS:

  • Processor                     :           Core I3
  • RAM Capacity            :           2 GB
  • Hard Disk                   :           250 GB
  • Monitor                       :           15″ Color
  • Mouse                         :           Two or Three Button Mouse
  • Key Board                  :           Windows 08/10

For More Details of Project Document, PPT, Screenshots and Full Code
Call/WhatsApp – 9966645624
Email – info@srithub.com

Facebook
Twitter
WhatsApp
LinkedIn

Enquire Now

Leave your details here for more details.