Team Work

A System for Denial-of-Service Attack Detection Based on Multivariate Correlation Analysis

ABSTRACT

Interconnected systems, such as Web servers, database servers, cloud computing servers etc, are now under threads from network attackers. As one of most common and aggressive means, Denial-of-Service (DoS) attacks cause serious impact on these computing systems. In this paper, we present a DoS attack detection system that uses Multivariate Correlation Analysis (MCA) for accurate network traffic characterization by extracting the geometrical correlations between network traffic features. Our MCA-based DoS attack detection system employs the principle of anomaly-based detection in attack recognition. This makes our solution capable of detecting known and unknown DoS attacks effectively by learning the patterns of legitimate network traffic only. Furthermore, a triangle-area-based technique is proposed to enhance and to speed up the process of MCA. The effectiveness of our proposed detection system is evaluated using KDD Cup 99 dataset, and the influences of both non-normalized data and normalized data on the performance of the proposed detection system are examined. The results show that our system outperforms two other previously developed state-of-the-art approaches in terms of detection accuracy.

EXISTING SYSTEM:

Generally, network-based detection systems can be classified into two main categories, namely misuse-based detection systems and anomaly-based detection systems. Misuse-based detection systems detect attacks by monitoring network activities and looking for matches with the existing attack signatures. In spite of having high detection rates to known attacks and low false positive rates, misuse-based detection systems are easily evaded by any new attacks and even variants of the existing attacks. Furthermore, it is a complicated and labor intensive task to keep signature database updated because signature generation is a manual process and heavily involves network security expertise.

DISADVANTAGES OF EXISTING SYSTEM:

  • Most existing IDS are optimized to detect attacks with high accuracy. However, they still have various disadvantages that have been outlined in a number of publications and a lot of work has been done to analyze IDS in order to direct future research.
  • Besides others, one drawback is the large amount of alerts produced.

PROPOSED SYSTEM:

In this paper, we present a DoS attack detection system that uses Multivariate Correlation Analysis (MCA) for accurate network traffic characterization by extracting the geometrical correlations between network traffic features. Our MCA-based DoS attack detection system employs the principle of anomaly-based detection in attack recognition.

The DoS attack detection system presented in this paper employs the principles of MCA and anomaly-based detection. They equip our detection system with capabilities of accurate characterization for traffic behaviors and detection of known and unknown attacks respectively. A triangle area technique is developed to enhance and to speed up the process of MCA. A statistical normalization technique is used to eliminate the bias from the raw data.

SYSTEM REQUIREMENTS

SOFTWARE REQUIREMENTS:

•           Web Technologies                               :           HTML, CSS, JS. JSP

•           Programming Language                      :           Java and J2EE

•           Database Connectivity                        :           JDBC

•           Backend Database                              :           MySQL

•           Operating System                               :           Windows 08/10

HARDWARE REQUIREMENTS:

  • Processor                                 :           Core I3
  • RAM Capacity            :           Java and J2EE
  • Hard Disk                               :           JDBC
  • Monitor                                   :           MySQL
  • Mouse                                     :           Two or Three Button Mouse
  • Key Board                   :          Windows 08/10

For More Details of Project Document, PPT, Screenshots and Full Code
Call/WhatsApp – 9966645624
Email – info@srithub.com

Facebook
Twitter
WhatsApp
LinkedIn

Enquire Now

Leave your details here for more details.